Distributed Neural Processing Predictors of Multi-dimensional Properties of Affect
نویسندگان
چکیده
Recent evidence suggests that emotions have a distributed neural representation, which has significant implications for our understanding of the mechanisms underlying emotion regulation and dysregulation as well as the potential targets available for neuromodulation-based emotion therapeutics. This work adds to this evidence by testing the distribution of neural representations underlying the affective dimensions of valence and arousal using representational models that vary in both the degree and the nature of their distribution. We used multi-voxel pattern classification (MVPC) to identify whole-brain patterns of functional magnetic resonance imaging (fMRI)-derived neural activations that reliably predicted dimensional properties of affect (valence and arousal) for visual stimuli viewed by a normative sample (n = 32) of demographically diverse, healthy adults. Inter-subject leave-one-out cross-validation showed whole-brain MVPC significantly predicted (p < 0.001) binarized normative ratings of valence (positive vs. negative, 59% accuracy) and arousal (high vs. low, 56% accuracy). We also conducted group-level univariate general linear modeling (GLM) analyses to identify brain regions whose response significantly differed for the contrasts of positive versus negative valence or high versus low arousal. Multivoxel pattern classifiers using voxels drawn from all identified regions of interest (all-ROIs) exhibited mixed performance; arousal was predicted significantly better than chance but worse than the whole-brain classifier, whereas valence was not predicted significantly better than chance. Multivoxel classifiers derived using individual ROIs generally performed no better than chance. Although performance of the all-ROI classifier improved with larger ROIs (generated by relaxing the clustering threshold), performance was still poorer than the whole-brain classifier. These findings support a highly distributed model of neural processing for the affective dimensions of valence and arousal. Finally, joint error analyses of the MVPC hyperplanes encoding valence and arousal identified regions within the dimensional affect space where multivoxel classifiers exhibited the greatest difficulty encoding brain states - specifically, stimuli of moderate arousal and high or low valence. In conclusion, we highlight new directions for characterizing affective processing for mechanistic and therapeutic applications in affective neuroscience.
منابع مشابه
Prediction of the changes in physicochemical properties of key lime juice during IR thermal processing by artificial neural networks
Thermal processing of the key lime juice leads to the inactivation of pectin methylesterase (PME) and the degradation of ascorbic acid (AA). These changes affect directly the cloud stability and color of the juice. In this study, an artificial neural network (ANN) model was applied for designing and developing an intelligent system for prediction of the thermal processing effects on the physico...
متن کاملDynamic Analysis of Multi-Directional Functionally Graded Panels and Comparative Modeling by ANN
In this paper dynamic analysis of multi-directional functionally graded panel is studied using a semi-analytical numerical method entitled the state-space based differential method (SSDQM) and comparative behavior modeling by artificial neural network (ANN) for different parameters. A semi-analytical approach which makes use the three-dimensional elastic theory and assuming the material propert...
متن کاملThe Application of Multi-Layer Artificial Neural Networks in Speckle Reduction (Methodology)
Optical Coherence Tomography (OCT) uses the spatial and temporal coherence properties of optical waves backscattered from a tissue sample to form an image. An inherent characteristic of coherent imaging is the presence of speckle noise. In this study we use a new ensemble framework which is a combination of several Multi-Layer Perceptron (MLP) neural networks to denoise OCT images. The noise is...
متن کاملA multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کاملApplication of Artificial Neural Networks (ANN) and Image Processing for Prediction of Gravimetrical Properties of Roasted Pistachio Nuts and Kernels
Roasting is among the most common methods of nut processing causing physical and chemical changes and ultimately increasing overall acceptance of the product. In this research, the effects of temperature (90, 120 ,and 150°C), time (20, 35 ,and 50 min) ,and roasting air velocity (0.5, 1.5 ,and 2.5 m/s) on gravimetrical properties of pistachio nuts and kernels including unit mass, true density, o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2017